EXI-450 Helicopter — Build Day 3

I only spent a couple of hours working on it tonight. I spent most of my time cooking for the kids. Tonight was no gourmet meal. However about 1/2 the time tonight was spent doing prep for tomorrow night. With 5 prime cuts of beef soaking up my proprietary beef rub overnight, it should be the basis of an enjoyable meal tomorrow.

So, with not much time I didn’t think I’d get much done. And, looking at the photos you’d probably ask how I spent 2 hours doing that. One word: soldering. One of the typically hidden, overlooked and far to often poorly done. Just for reference, here are some tips from Ask.com [LINK].

First, let me back track a little bit. As mentioned in yesterday’s post, I’d not been able to purchase a battery locally. Today, I took a chance and shot over to one of the really old-school hobby shops. It’s right next to the PLU campus in Parkland. As with all recent trips to the hobby shop, it wasn’t a cheap trip. I did, however, get a battery with a really nice mAh rating. The C level is fairly low (surge capacity) but for some training flights it might keep me out of trouble. And the price was pretty decent (about 1/2 of what other places were going to sell me much smaller battery for).

My first 3-cell Li-Po battery. It's a beast.

You can see in the photo here, the battery is a lot larger than the ‘big batteries’ for the MadHawk300. They look pretty wimpy in comparison (for reference, the MadHawk battery is the silver one marked ExceedRC on top).

Charging the new 3C 11.1V battery with a wimpy charger, 3 hours and counting.

It is only going to take about 3 1/2 hours to charge that battery with the wimpy little charger I have right now. That does not allow for much flying. :/

Back to the soldering story. The first step was to solder the Deans connectors onto the speed controller (aka ESC). Soldering the speed controller was a breeze. Good quality wire bound to the Deans connectors quickly. That was easy!

Battery, Deans connectors and speed controller.

What I spent probably an hour fighting with are the cheap micro-hair stranded aluminum wire on the battery I picked up today. It’s one of those things you just can’t see when you purchase them, since they typically already have some sort of connector affixed. Sadly, not the connector type I want to use. Here is a close up of a Deans connector I’ll be using.

Deans connector. Considered the most versatile and popular currently in use with RC Electric aircraft.

But I did get the soldering completed, after destroying one set of Deans connectors doing it. Quality of the joints are highly suspect, but they seem to be mechanically sound (tested). Voltage check on the battery before and after affixing the connectors did not indicate any measurable voltage drop due to resistance in a bad solder joint.
Here is a photo of the final production, on the ESC. I don’t plan to post a photo of the battery connector and soldering work. It’s an embarrassment. But after 3 attempts, one destroyed connector and starting to run out of wire for the battery, it’s going to have to be sufficient.
Male Deans connector in ESC.

With a 3-cell battery, connectors attached to battery and speed controller (ESC), I was able to finally power up the AR6200 long-range receiver and get it bound to the DX6i radio.

Setting up TX and RX to talk to each other.

One of the nice things about the DX6i, is it’s 10 model memory. Plus it has the ‘safe model’ feature. If you accidentatly forget to select the right model file for what you are flying, the RX and TX won’t talk to each other. RX binding data is retained with the model configuration. The concept here is to keep you from firing up your cool Delta Dart ducted fan jet, and taking off, only to find you’d left the transmitter configured for a conventional aircraft. That can create a REAL mess when you grab a stick full of elevator. The DX6i won’t like kind of mistake happen.

DX6i display for the EXI-450 model helicopter

With power on the system, plugging in the servos allowed preliminary servo horn positioning and fine tuning with the sub-trims. Just in case I lose my programming on the bird, I’m going to document the subtrims and other settings on this page:

Sub-Trims EXI-450 V2 & Spektrum DX6i
Throttle 0 Aileron +40
Elevator +32 Rudder +23
Gyro 0 Pitch 0

So, here is the current state at the end my tonight’s short work session. As you can see, there is a lot of work left to do. It still does not even look much like a helicopter yet.

EXI-450 slowly becoming a flying machine.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.