Wrapping up a bittersweet trip to Reno for the last of the Air Races, we made a stop in Atwater to visit Castle Air Museum. They have an extensive collection of aircraft at the location of former Castle Air Force Base.
SR-17 BlackbirdSR-71 BlackbirdSR-71 BlackbirdSR-71 BlackbirdSR-71 BlackbirdVC-9 (DC-9) Presidential planeVC-9 Castle Air Museum Memorial ParkCastle Air Force Base History
Museum Restoration Center
UH-1 HueyF-117 StealthF-117 StealthUH-1 & F-117F-117 StealthF-4 Phantom IIF-4 Phantom IIF-117 StealthF-102 DaggerF-117 StealthF-117 StealthF-4 PhantomF-102 DaggerAir Force Jeep TugF-102 DaggerCastle Air Museum Restoration Center Hanger
Castle Air Museum is located at 5050 Santa Fe Drive, Atwater, California, 95301
It’s been an ongoing tail of woe, when it comes to installing a new version of STRATUX on a new card; out of the box, at least in all the installs I’ve done, it fails to make use of the entire card. With any sort of logging enabled to measure performance, run tests or just keep even a short history of contacts received.. you’re out of disc space… FAST:
Here is the ‘df’ dump of a STRATUX fixed position station running the latest version (released September 2019). As you can see, it’s only allocated 2GB of the 32GB card’s total available space. That is a lot of wasted space on the card.
Filesystem Size Used Avail Use% Mounted on
/dev/root 1.8G 1.6G 110M 94% /
/dev/mmcblk0p1 60M 20M 41M 34% /boot
Get total device size:
fdisk -l | grep Disk
Disk /dev/ram0: 4 MiB, 4194304 bytes, 8192 sectors
...
Disk /dev/mmcblk0: 29.7 GiB, 31914983424 bytes, 62333952 sectors
Disklabel type: dos
Disk identifier: 0xe6a544c8
Repartitioning the Device
With the physical partition located.. start fdisk: fdisk -u /dev/mmcblk0
I like to increase the size of the main partition to 6G to leave room for installing more system updates and tools.
To do this you will need to know the starting and ending blocks of the partition. That is available with the ‘print’ command:
Command (m for help): p
Results:
Disk /dev/mmcblk0: 29.7 GiB, 31914983424 bytes, 62333952 sectors
Units: sectors of 1 * 512 = 512 bytes
Disk identifier: 0xe6a544c8
Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)
/dev/mmcblk0p2 131072 3887103 3756032 1.8G 83 Linux
To increase the size, the partition must first be deleted, then re-create at the exact same starting block, or the filesystem will become corrupted.
First, delete the partition with the ‘d’ command, selecting partition #2.
Next, re-create the partition with the same starting block, but now with increased filesystem size:
Command (m for help): d
Partition number (1,2, default 2): 2
Partition 2 has been deleted.
Command (m for help): p
Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)
Command (m for help): n
Partition type
p primary (1 primary, 0 extended, 3 free)
e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (2048-62333951, default 2048): 131072
Last sector, +sectors or +size{K,M,G,T,P} (131072-62333951, default 62333951): +6G
Created a new partition 2 of type 'Linux' and of size 6 GiB.
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Re-reading the partition table failed.: Device or resource busy
The kernel still uses the old table. The new table will be used
at the next reboot or after you run partprobe(8) or kpartx(8).
The partition table will have been modified but the kernel will not be able to take that into account as some partitions are mounted.
In theory, the command ‘partx /dev/mmcblk0’ is all that is required.. however I’ve found that rebooting is the only way to really reload the partition, so that the filespace can be increased.
reboot
Once system comes back up, run ‘resize2fs‘ to expand the filesystem.
Fill up drive with current filesystem
Execute `resize2fs` and run an on-line expansion of the filesystem, and finally verify it again with ‘df -h’
resize2fs /dev/mmcblk0p2
resize2fs 1.43.3 (04-Sep-2016)
Filesystem at /dev/mmcblk0p2 is mounted on /; on-line resizing
required
old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/mmcblk0p2 is now 1572864 (4k) blocks long.
Running df shows that it has in fact resized. STEP 1 COMPLETED
Weather finally improved over the last week in Central Texas, and that means “The Boy” is up and flying, working on his private pilot license. I often take my “good” camera to the airfield because you never know what sort of activity you will capture.
Here are some of the highlights:
Alan flying with Black Hound Aviation Flight School
Checking in with my Starux project this morning, I found it unresponsive. A physical check shows a flashing red light on the Pi… something has gone haywire, and I couldn’t SSH into the little thing, so a really hard cold restart was in order.
Following the restart I quickly shut Stratux back down to start performing diagnostics:
pi@raspberrypi:~ $ sudo su -
root@raspberrypi:~# service stratux stop
Diagnostics 101
Check Filesystem Health
The last time the little Stratux suddenly had problems it was a filesystem space issue ( previous article ). It turns out the boot drive space was OK but the new Logging partition was again, completely consumed:
There are a number of ways to locate large file on a *NIX system. My favorite tool is find. First thing I want to do is locate any file that is larger than 1 Gigabyte, and sure enough it located a massive sqlite database file. The same one that ate up all the space on the boot drive. So.. this is going to require some more extrodinary measures to maintain 100% 24×7 operational status.
First order of business is to move aside the massive database, but try to preserve the data for examination. Since the filesystem is full, I can’t zip this thing in place, so first some space needs to cleared on the device. The things I’m least interested in go first.. like the zipped syslogs and any other ‘archived’ file (those with a .# suffix).
But.. that’s not going to doe the complete trick, especially if after deleting files df still shows 100% utilization. You need to figure out what is holding which deleted file(s).
Normallyh, the best way to do that on *NIX is with lsof. Much to my chagrin, it was not available on the OS… so I had to go grab it. Thankfully I had the main filesystem on a different partition that still had enough space to install more tools! Once lsof was installed, grep through the list of open file handles and find those marked for delete.. and those are the processes that have handles pointing to those files. However, this didn’t help me with Rasperian Jessie. I know that a reboot will recover the space so.. that was the next step.. a brutal warm-boot.
root@raspberrypi:/var/log# lsof
-su: lsof: command not found
root@raspberrypi:/# apt-get install lsof
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
libperl4-corelibs-perl
The following NEW packages will be installed:
libperl4-corelibs-perl lsof
...
The first thing was to move aside the current database, and then restart stratux to verify it can created a new empty database for it’s purposes.. then shut it right back down again.
root@raspberrypi:/var/log# mv stratux.sqlite stratux.sqlite.1
root@raspberrypi:/var/log# service stratux start
root@raspberrypi:/var/log# ls -l
total 7291480
[...]
-rw-r--r-- 1 root root 4096 Apr 30 14:27 stratux.sqlite
-rw-r--r-- 1 root root 7466160128 Apr 30 14:24 stratux.sqlite.1
[...]
root@raspberrypi:/var/log# service stratux stop
A new empty database file has been created [ 4096 Apr 30 14:27 stratux.sqlite ]. This tells me that moving aside the current database file on a periodic basis, compressing and then archiving it should be sufficient to maintain operational status.
Logging Insanity
Before restarting Stratux, I zerod out these log files. Running for first a few moments these files were already reading up a lot of space. Tailing one of them I see that Stratux, with my current settings is logging A LOT of data to these log files. I feel this was my first error.. enabling too much logging. My settings look like this:
With those settings enabled, there are a lot of GPS and other events that I don’t really have a use for, being dumped into the Statux log.
Turning OFF ‘Verbose Message Log’ made that insanity stop.
Replay logging is what is writing to the SQLite database. So the question is. how much of that data do I want to keep, and how much will I lose if I turn off the replay logs. I think that will be research for another day… right now the goal is to recover disk space by compressing the massive database file that was moved aside, and get Stratux stabilized again. Once compressed, check filesystem and file size!
An ADS-B listening station has long been on my list of things to build.
Our current residence is located right under the domestic approach to San Francisco International Airport (see picture), so I believed there should be plenty of data for testing and tuning.
Local Air Traffic
What is Stratux
So, what are we talking about here? It’s Stratux, and Open Source complete software package that leverages inexpensive SDRs (Software Defined Radios).
“Stratux is a homebuilt ADS-B In receiver for pilots. It’s easy to assemble from inexpensive, off-the-shelf hardware, and probably already works with your electronic flight bag (EFB) of choice. Even better, if you’re so inclined, the software is open-source and hackable so you can build the system that’s right for you. “
This is some powerful stuff!
The Raspberry Pi 3 (revision b)
Raspberry PI 3After completing a proof-of-concept residential IP space data acquisition project for a client, I found myself with a Raspberry Pi just sitting on shelf.
The Raspberry Pi 3b is a neat little device. A full Linux computer in a form factor the size of a pack of card, including a graphics chip that drives and HDMI output making it a real (compact and low power) desktop project computer.
SoC: Broadcom BCM2837 CPU: Quad-core ARM Cortex-A53, 1.2GHz GPU: Broadcom VideoCore IV 3D graphics RAM: 1GB LPDDR2 (900 MHz) Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy Storage: microSD GPIO: 40-pin header, populated Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI)
My first Raspberry Pi purchase (as requested by the client) was a complete kit that cost me about $75 [ link to super size kit ], but you can certainly get the bare Raspberry Pi for under $40 (assuming you have some spare things like a micro-USB cable and a micro SD card).
Adding ADS-B radios
Adding ADS-B radios to the Raspberry Pi was as easy as ordering a kit form Amazon for under $40. [ Dual-Band ADS-B (978MHz UAT & 1090MHz 1090ES) Bundle For Stratux ]. For some reason, I’d debating buying the radios and building a kit. There are several complete kits with the computer, radios, specialized case, memory card etc. Prices vary between $120 to $250 depending on what parts you want. When I found this little kits with 2 sets of antennas, radios and coax for under $40.. it was just too easy to pull the trigger. So far they have been well worth the very inexpensive purchase!
Assembling the Sysetm
Custom Stratux Pi CaseBeing a proof of concept, I didn’t feel like dropping another $20 on a specialized case such as this one (right), because I wasn’t sure if I’d be happy with this project.
The previous projects housing was too small (in my opinion) to provide what I wanted, which was a single item housing all the parts. Again, wanting to minimize costs while building project, I opted to re-purpose an small plastic ammo can into a make-shift housing. The unfortunate side effect of that decisions is that the final product looks like some sort of nefarious device (see final photos somewhere below).
Using the drill press / mill I have setup for another project, I quickly milled some vents to the plastic box to vent out the heat created by the Pi and the two nano radios. And believe me, this is something you want to do. Using the Stratux software, I’m typically seeing CPU temperatures around 140F (toasty), and the radio run a lot hotter.
SDRs installed into Raspberry Pi Hot enough to blacken the decals I’d put on the bottoms of the radios (this is what they looked like before they were cooked).
Once I had all the milling completed I installed the radios, Pi and coax into the box. The coax are reasonable flexible but still barely looped around inside the box. This photo was before I added another port for an Ethernet cable (that hack to be discussed in a subsequent post). It might not look pretty, but it does work!
Milled ammo box
SDRs and Pi installed in the ammo box.
Final Stratux in Ammo Box project
Making it all work
Once the physical construction was done, the last step was to download the software, burn it to a little MicroSD card and fire it up!
Once you have connected to the ad-hoc stratux WiFi network, navigate to this IP address: http://192.168.10.1 . If your system is up and running you’ll see a page that looks like this:
Stratux landing page at 192.168.10.1
If you have some aircraft overhead (as I almost always do), you should see them listed on the ‘Traffic’ page. This is what mine looked like just a few minutes before writing this article:
Stratux Air Traffic page
Now that you have this up and running, it can provide a GDL 90 data feed to variety of flight planning / monitoring software, including some free apps for iOS and Android. The full current list of software supported on the Stratux main page. Here is a snapshot of software support at this time: