Category Archives: Texas

USS Lexington – Corpus Cristi Texas

Myself and best friend spent most of the day visiting the USS Lexington CV-16 Museum in Corpus Cristi, Texas.

On par with other fantastic Texas Museums such as the Nimitz Museum in Fredericksburg, this was full of artifacts and information . Having visited a number of shipboard museums, I was amazed at the amount of areas open to the public, and the depth and quality of the exhibits.

The “Blue Ghost” has quite a story behind her. First named the CABOT while under construction, it was renamed the LEXINGTON after the original Lex (CV-2) was sunk at Coral Sea. This is also the carrier from on which Sen. John McCain served, before being shot down over Vietnam.

Here a a number of photos of the upper flight and hanger deck displays. Although we were able to explore some of the lower decks, we ran out of time, so there are only a couple of photos there.

This museum deserves a full day’s attention to try and get all you can from the experience. I hope you enjoy some of the snapshots.

Some Favorite Moments in Pictures Years Past

Looking back at 12 years of blog posts, photographs and tech articles, today I’m pulling up some of my favorite photos from years past.

Photo descriptions include a link to the story where it originally appeared.


May 2009 – Turn 2 crash at the Spanish Grand Prix in Barcelona
McLaren Test Drive Day during Car Week in Monterey CA. 570 Series cars (mine is on the right).
Alan DeMartini preparing for his First Solo – October 2018 in San Marcos Texas
Fleet Week 2016 in San Francisco CA. – NAVY Blue Angels demonstrate opposing pass low over the spectator boats.
Rare Porsche 917 Le Mans cars at Rensport Reunion 2016 in Monterey, CA.
F22 Raptor at the California Air Show in Salinas.
Rafting the American River’s South Fork (class 2-4+).
Lamborghini and Ducati in my garage. What an amazing day taking in the roads of the Santa Cruz Mountains.
An evening at Los Gatos Lamborghini with Lambo’s Chief Test Driver, Valentino Balboni.
First winter in Santa Cruz CA. Attended the O’Neil Classic pro surf competition in 80 degree weather; amazing!

Canyon Lake Birds – Feb. 2021

A number of birds from the Canyon Lake area have visited since we placed a bird seed feeder in the yard. When the South Texas Polar Storm hit us a week later, the feeder became an important source of food for the avian community, which experienced 6″ of snow over a week of temps 40 degrees below average. We’re happy to have helped out the local wildlife, while enjoying their colorful antics.

Creating a Personalized Recreation Dashboard – Installing Software (Part 2)

Rasperian Buster has a working desktop out of the box, but to run NodeJS Roosevelt and Java, some installations will need to be done first.

INSTALLING JAVA JDK / JRE

This is pretty simple. I like to install both the Dev Kit (JDK) and the Runtime (JRE) elements. To do so on Buster, simply request the default packages:

sudo apt install default-jdk default-jre

Let Apt do it’s work. Once done you should be able to verify java is installed and available:

java --version

My installed version reported openjdk 11.0.7 2020-04-14

INSTALLING NodeJS and NVM

Next, NodeJS will be installed and built from git

curl -sL https://deb.nodesource.com/setup_10.x | sudo bash -

Installing NVM follows a similar process

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash

Now the Pi is setup and ready to install other helper applications.

INSTALLING ROOSEVELT SCAFFOLDING

For this project, I selected Roosevelt based on successful prior experience with a complex NodeJS / Java web application built on Roosevelt. Follow the prompts to create the basic application.

I selected a directory called lakedash and an app named app .

npx mkroosevelt

SETTING UP THE BASIC APP FRAMEWORK

Change directories to the path lakedash/app (or whatever you picked).

cd  lakedash/app

Now, run the node install process to download and localize the packages used by Roosevelt. It’s easy.. just do it.

npm i

Starting up the simple little app in development mode.

npm run dev

Next phase will be setting up some swap space by re-partitioning the little Pi’s SD card.

Creating A Personalized Recreation Dashboard – Setting up the Pi – Part 1

With the impending move to one of the state’s premier recreation areas, I’m embarking upon setting up a customized data systems based on the Raspberry Pi, that will collect and display recreation related data. Some of the goals of this project are:

THE PLAN

  • River flow rate — knowing what the current river flow helps decided if it will be a weekend of tubing, kayaking or finding something else to do. River flow is managed by the Army Corps of Engineers and can vary greatly. Knowing the current flow helps plan the day.
  • Lake Level — certain boat ramps, beaches and parks are better at near-full level than not. Having a good idea of what the beaches and marinas might be like before heading down the hill to the lake can be helpful.
  • Area Traffic — this one will be tricky, but the plan is to leverage TXDOT traffic APIs to find out what the traffic might be like heading into the major cities (ex. Austin or San Antonio) should there be a need to do so. There are a lot of existing resources but having it all in a dashboard would be nice to have.
  • WX — of course.. some sort of simple weather forecast dash to show the day’s expected temps, if lightning is in the forecast (you don’t want to be on the river/lake when the heavens open up), etc.

THE RECREATION DEVICE

The plan is to use a Raspberry Pi 3b as the data harvesting and webapp platform. In addition to the standard Pi, I’ve added a 3.5″ touchscreen to display the data in a stand-alone format.

Raspberry Pi 3b with 3.5″ touchscreen

The full plan for the webapp will support both the micro 3.5″ display as well as interface versions for larger displays such as a table or desktop.

CONFIGURING THE PI

Once you have downloaded the Pi Image you want to run, have it burned to the micro SD card and the system booted up, you’ll need to have it either plugged into your network on an ethernet cable, or attached via HDMI to a monitor.

I plugged the stripped down device into the router with short cable:

This image has an empty alt attribute; its file name is stratux-pi-initial.jpg

Once it was powered on, checked the router to locate it’s DHCP IP address, in this case it’s 192.168.1.220

Using the terminal window on my, I ssh’d into the device as the user ‘pi’ using default password ‘raspberry’ . Once connected, I set about updating the PI.

sudo apt-get upgrade

If you face a dpkg error.. this command will resolve it, and you can re-run the command above.

sudo dpkg --configure -a

sudo apt-get upgrade

SETTING UP WIFI

To untether the device from my LAN, you’ll need to configure the Pi to connect to your WiFi. If you are running the desktop version of Raspberian, you can do this with the networking setup dialogs. If you do not, here are the steps for setting up your networking, including defining your network and password.

Locate the wifi network configuration file and add the following data. You can of course use tools to encrypt the password in this file, but I’m not super-concerned about an exploit on my LAN so I’ve let this in plain text.

sudo vi /etc/wpa_supplicant/wpa_supplicant.conf

Add the following block, with your network specifics

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

country=USnetwork={
  ssid="YOUR-NETWORK-SSID"
  psk="your-super-secret-password-goes-here"
  key_mgmt=WPA-PSK
}

Now setup the wlan with a static IP address. You could configure a DNS service to automagically detect the IP address of the system, but for me it was easier for me to pick a static IP and configure the Pi’s network accordingly.

Edit the network/interfaces file:

sudo vi /etc/network/interfaces

Add the following block. This will set a static IP (make sure it’s in a range not managed by your DHCP to avoid future conflicts).

auto wlan0

iface wlan0 inet static
  metric 0
  wireless-power off
  hostname recserver
  wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
  address 192.168.1.100
  netmask 255.255.255.0
  gateway 192.168.1.1
  network 192.167.1.0
  broadcast 192.168.1.255
  dns-nameservers 192.168.1.1 8.8.8.8

SETTING UP THE DISPLAY

The display that I have installed in the Pi’s case is the MHS-3.5 display. Installing the drivers requires only a few commands. While logged in as the user ‘pi’ download the LCD-show package from git and configure execute the display configuration script.

git clone https://github.com/Lcdwiki/LCD-show.git

Move to the cloned directory and run the setup script

cd LCD-show
sudo ./MHS35-show

This will download and install packages required to use the display. Once it completes, you’ll want to reboot the Pi to verify that it is working properly.

sudo init 6

Upon reboot, the screen should become visible and operable.

In Part 2, I’ll cover installing Node, Maven and Node Package Manager.

STRATUX – A WIFI CONNECTED GROUND STATION (2020)

It’s 2020, we’re deep in the throws of the COVID-19 PanicDemic, so I decided to build a refreshed receiver. Once completed, this fixed-station Stratux receiver will double as a FlightRadar24 feed node.

The initial effort was quite successful, so, I’m taking recommended ‘Social Distancing’ mandates to re-document the setup process I used to accomplish the following:

Imaging Stratux

The first step was performing a default STRATUX install to a micro SD card. I selected a 16GB card for this project, but Stratux will run on anything down to 4 GB, based on what I observed with the default file system (default size is under 2GB).

I won’t repeat the installation instruction here, since they might have changed since this article was written. The instructions I used, and link to the latest Pi Image are located here: [ STRATUX.me ]

Preliminary Work

Once the card was imaged, I plugged in an HDMI cable, keyboard, mouse and Ethernet cable to start work.

Stratux Pi preliminary setup

Once powered up and the boot sequence completes, your are challenged with a simple login prompt. The initial login is: pi and the password is raspberry.

Once you login, you’ll see this welcome screen (sorry for the crappy photo.. if I can figure out how to PiP the HDMI output to my Mac to snap a good screen shot, I’ll re-do this!

Stratux first login

You will WANT to change that default password first!

Changing Default Password

Switch user to root and change the pi user’s password. You do not NEED to be root to change your own password, but we’ll need to be root from here on out.. and why not just do it that way?
pi@raspberrypi: sudo su -

root@raspberrypi: passwd pi
Enter new UNIX password: enter your password here
Retype new UNIX password: re-enter your password here

Next, will be the modifications to disable the adhoc network and enable local WiFi connectivity.

Disable adhoc ‘stratux’ WiFi

Now that you are logged into the Stratux via ssh, assume root user and then cd to the networking directory again:
pi@raspberrypi:~ $ sudo su -

root@raspberrypi:~# cd /etc/network

root@raspberrypi:~# vi interfaces

Now, this time the interfaces file will be heavily modified to configure the eth0 and wlan0, along with some rational routing, using the ‘metric’ setting to prioritize route assignments.

At the top of the file a new line will be added:
auto lo
auto wlan0

iface lo inet loopback

Then replacing the wlan0 entries with the following block of text. NOTE: The line `wireless-power off` will disable the power management for WiFi. If this is not done, I have found that the chip will shut down after a couple of hours and the device will become unreachable via wifi, until it’s rebooted. This discovery took no short amount of time to discovery and remedy.

iface lo inet loopback

iface lo inet loopback

iface wlan0 inet static
   metric 0
   wireless-power off
   hostname Stratux-eth0
   wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf
   address 10.100.0.210
   netmask 255.255.255.0
   gateway 10.100.0.1
   network 10.100.0.0
   broadcast  10.100.0.255
   dns-nameservers 10.100.0.1 8.8.8.8 

Configure the wlan0 WiFi

NOTE!: As of 19-APR-2020 and Raspberry Pi 3b; 5.0GHz Wifi IS NOT SUPPORTED.

Now.. the really fun part.. connecting the Pi to your WiFi network. You will need to find the SSID you want to connect to and the password for that network before starting.

The networking configuration that you setup in the previous step contains this setting: ‘wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf‘. The next step is to create/configure that file.

The file is fairly simple, and with the SSID and Password you already obtained for your network (you did that already.. right?). You’ll simple fill that information into the blanks named _SSID_ and _NETWORK_PASS_.

Open the file and edit:
root@raspberrypi:~# vi /etc/wpa_supplicant/wpa_supplicant.conf

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

Add this block below the original lines, using your settings. _SSID_ for the ID of the 2.4GHz network you are connecting too, and _NETWORK_PASS_ will be the plain-text password for that network. NOTE: For more security you can configure this block to use an encrypted password. That is beyond the scope of this basic tutorial; there are many pages that detail that process if you want to implement it.

network={
        ssid="_SSID_"
        psk="_NETWORK_PASS_"
}

Save this file, restart networking, signal a daemon reload, and then, reboot of the device. Once the networking is back up, check to make sure you are able to contact the machine via it’s WiFi connection.

root@raspberrypi:~# systemctl networking restart
root@raspberrypi:~# systemctl daemon-reload
root@raspberrypi:~# reboot

After 2-3 Min. the Pi should have completed restarting and you should be able to verify a successful WiFi login.
IngeniiGroup:STRATUX$ ssh pi@192.168.1.210

Increasing Root Filesystem Space

By default, the size of the disk partitions on the image is VERY small; less than 2GB. Most of that space is used by by the base Stratux install, leaving about 400MB of space to save logs (and your replay database if you turn it on). You can see this with the ‘df’ command:

root@raspberrypi:~# df -h

Filesystem      Size  Used Avail Use% Mounted on
/dev/root       1.8G  1.4G  324M  81% /
devtmpfs        459M     0  459M   0% /dev
tmpfs           463M     0  463M   0% /dev/shm
tmpfs           463M   12M  451M   3% /run
tmpfs           5.0M  4.0K  5.0M   1% /run/lock
tmpfs           463M     0  463M   0% /sys/fs/cgroup
/dev/mmcblk0p1   60M   20M   41M  34% /boot

This just isn’t enough space, especially for the ‘/var/log’ directory where a lot of transient/logging data is written. My solution is to create a disk partition and mount it to `/var/log`.

Locate the disk device

Instructions on the web are not exactly correct, some suggest /dev/sda as the main device, however my testing shows it’s actually this named ‘/dev/mmcblk0’.
root@raspberrypi:~# fdisk -l | grep Disk
[...]
Disk /dev/mmcblk0: 14.5 GiB, 15523119104 bytes, 30318592 sectors

… with the following partitions:Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)
/dev/mmcblk0p2 131072 3887103 3756032 1.8G 83 Linux

Running fdisk

With the physical partition located.. start fdisk:
fdisk -u /dev/mmcblk0

Welcome to fdisk (util-linux 2.25.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

First, order of business is to increase the size of the main partition, to give it a big more room than just 1.8GB. I like to bump it up to around 4GB to leave room for installing more system updates and tools. To do this you will need to know the starting and ending blocks of the partition. That is available with the ‘print’ command:
Command (m for help): p

Disk /dev/mmcblk0: 14.5 GiB, 15523119104 bytes, 30318592 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xe6a544c8

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)
/dev/mmcblk0p2 131072 3887103 3756032 1.8G 83 Linux

Now delete the partition. Yes.. feels VERY dangerous.. and it is.. but as long as the starting block is maintained, and the end block number is increased.. this will end up being a safe operation. Verify that you targeted the correct partition by using ‘p’ again:
Command (m for help): d
Partition number (1,2, default 2): 2

Partition 2 has been deleted.

Command (m for help): p
Disk /dev/mmcblk0: 14.5 GiB, 15523119104 bytes, 30318592 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xe6a544c8

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 8192 131071 122880 60M c W95 FAT32 (LBA)

If this is correct, now recreate it with same number (2), start and type but with a bigger end (taking care not to overlap with other partitions). Try to align things on a megabyte boundary that is for end, make it a multiple of 2048 minus 1. Change the type if needed with t (for partitions holding an extX or btrfs filesystem, the default of 83 is fine). Then `w` to write and `q` to quit.
Command (m for help): n
Partition type
p primary (1 primary, 0 extended, 3 free)
e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (2048-30318591, default 2048): 131072
Last sector, +sectors or +size{K,M,G,T,P} (131072-30318591, default 30318591): 8451072

Created a new partition 2 of type ‘Linux’ and of size 4 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Re-reading the partition table failed.: Device or resource busy

The kernel still uses the old table. The new table will be used at the next reboot or after you run partprobe(8) or kpartx(8).

root@raspberrypi:~#

The partition table will have been modified but the kernel will not be able to take that into account as some partitions are mounted.

However, if in-use partitions were only enlarged, you should be able to force the kernel to take the new layout with:
root@raspberrypi:~# partx /dev/mmcblk0
NR START END SECTORS SIZE NAME UUID
1 8192 131071 122880 60M e6a544c8-01
2 131072 8451072 8320001 4G e6a544c8-02

If the command works the next step is to expand the filesystem. In my case I needed to reboot before the kernel picked up the new partition size, despite running partx to fill up this new space.
root@raspberrypi:~# init 6

Following the restart, execute `resize2fs` and run an on-line expansion of the filesystem, and finally verify it again with ‘df -h’
root@raspberrypi:~# resize2fs /dev/mmcblk0p2
resize2fs 1.42.12 (29-Aug-2014)
Filesystem at /dev/mmcblk0p2 is mounted on /; on-line resizing required
old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/mmcblk0p2 is now 1040000 (4k) blocks long.

root@raspberrypi:~# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/root 3.9G 1.4G 2.4G 36% /
devtmpfs 459M 0 459M 0% /dev
tmpfs 463M 0 463M 0% /dev/shm
tmpfs 463M 6.2M 457M 2% /run
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 463M 0 463M 0% /sys/fs/cgroup
/dev/mmcblk0p1 60M 20M 41M 34% /boot

The next step is to add a 3rd partition which will then be mounted to `/var/log`

Creating a dedicated filesystem for logging / database

I ended up creating 3 primary partitions, the largest of which will be mounted to `/var/log`.
fdisk /dev/mmcblk0

Command (m for help): n
Partition type
p primary (2 primary, 0 extended, 2 free)
e extended (container for logical partitions)
Select (default p): p
Partition number (3,4, default 3): 3
First sector (2048-30318591, default 2048): 8451073
Last sector, +sectors or +size{K,M,G,T,P} (8451073-30318591, default 30318591): 30318591

Created a new partition 3 of type ‘Linux’ and of size 10.4 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Re-reading the partition table failed.: Device or resource busy

The kernel still uses the old table. The new table will be used at the next reboot or after you run partprobe(8) or kpartx(8).

root@raspberrypi:~# partprobe

Checked to make sure the device was crated by checking the `/dev` directory:
root@raspberrypi:~# ls -l /dev/mmcblk0*
brw-rw---- 1 root disk 179, 0 May 15 15:11 /dev/mmcblk0
brw-rw---- 1 root disk 179, 1 May 15 15:11 /dev/mmcblk0p1
brw-rw---- 1 root disk 179, 2 May 15 15:11 /dev/mmcblk0p2
brw-rw---- 1 root disk 179, 3 May 15 15:11 /dev/mmcblk0p3

Next, put a filesystem on this new partition. Using df to determine the type of filesystem currently in use; I recommend that you stick with it for this most basic of operations:
root@raspberrypi:~# df -T

Filesystem Type 1K-blocks Used Available Use% Mounted on
/dev/root ext4 4063680 1392604 2512268 36% /
devtmpfs devtmpfs 469688 0 469688 0% /dev
tmpfs tmpfs 474004 0 474004 0% /dev/shm
tmpfs tmpfs 474004 6340 467664 2% /run
tmpfs tmpfs 5120 4 5116 1% /run/lock
tmpfs tmpfs 474004 0 474004 0% /sys/fs/cgroup
/dev/mmcblk0p1 vfat 61384 20416 40968 34% /boot

Run mkfs to initialize the filesystem.
/sbin/mkfs -t ext4 /dev/mmcblk0p3

Creating filesystem with 2733439 4k blocks and 684096 inodes
Filesystem UUID: 94f004af-7008-4dbe-8805-3eb2d739436b
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information:... this might go on for a bit..

Once completed.. mount this where the logs and databases live. To do this the first thing that needs to happen is to check your current fstab:
cat /etc/fstab
proc /proc proc defaults 0 0
/dev/mmcblk0p1 /boot vfat defaults 0 2
/dev/mmcblk0p2 / ext4 defaults,noatime 0 1
# a swapfile is not a swap partition, no line here
# use dphys-swapfile swap[on|off] for that

My first order of business was to copy the current `/var/log` to a new location, create a new clean mount point for `/var/log` and then mount the new filesystem, and then verify it’s mounted using `df -h`
root@raspberrypi:~# mv /var/log /var/log2
root@raspberrypi:~# mkdir /var/log
root@raspberrypi:~# mount -t ext4 /dev/mmcblk0p3 /var/log
root@raspberrypi:~# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/root 3.9G 1.4G 2.4G 36% /
devtmpfs 459M 0 459M 0% /dev
tmpfs 463M 0 463M 0% /dev/shm
tmpfs 463M 6.2M 457M 2% /run
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 463M 0 463M 0% /sys/fs/cgroup
/dev/mmcblk0p1 60M 20M 41M 34% /boot
/dev/mmcblk0p3 11G 27M 9.6G 1% /var/log

Edit the fstab file to create a mount point for the new partition where the logs used to be written (added the orange line), and ran mount to verify that it will automount on a restart.
root@raspberrypi:~# vi /etc/fstab

proc /proc proc defaults 0 0
/dev/mmcblk0p1 /boot vfat defaults 0 2
/dev/mmcblk0p2 / ext4 defaults,noatime 0 1
/dev/mmcblk0p3 /var/log ext4 defaults,noatime 0 0
# a swapfile is not a swap partition, no line here
# use dphys-swapfile swap[on|off] for that

root@raspberrypi:~# mount -a

Restart and verify

Restart the little box and verify that the mount was preserved.
init 6

Log back in, and run df to check the filesystem health. It should now has the the main filesystem has some breathing room again:
pi@raspberrypi:~ $ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/root 3.9G 1.4G 2.4G 36% /
devtmpfs 459M 0 459M 0% /dev
tmpfs 463M 0 463M 0% /dev/shm
tmpfs 463M 6.2M 457M 2% /run
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 463M 0 463M 0% /sys/fs/cgroup
/dev/mmcblk0p1 60M 20M 41M 34% /boot
/dev/mmcblk0p3 11G 27M 9.6G 1% /var/log

Setting Time with NTPD

If you do not have a GPS receiver attached to your Stratux, then it might not be able to determine proper system time. When this is the case, enabling ntpd will be your solution. Using national time sync services, it will keep your system clock correct. If you have your GPS plugged in, it’s getting really good timing signals already.. or the location function would not work at all! For the non GPS users:

Install ndptdate:
root@raspberrypi:~# apt-get install ntpdate
Reading package lists... Done
Building dependency tree
Reading state information... Done
[...]
Do you want to continue? [Y/n] Y
Get:1 http://mirrordirector.raspbian.org/raspbian/ jessie/main liblockfile-bin armhf 1.09-6 [18.2 kB]
Get:2 http://mirrordirector.raspbian.org/raspbian/ jessie/main liblockfile1 armhf 1.09-6 [14.7 kB]
Get:3 http://mirrordirector.raspbian.org/raspbian/ jessie/main ntpdate armhf 1:4.2.6.p5+dfsg-7+deb8u2 [69.0 kB]
[...]
Setting up ntpdate (1:4.2.6.p5+dfsg-7+deb8u2) ...
Processing triggers for libc-bin (2.19-18+deb8u3) ...

It should now start at bootup and resolve any timing issues you might have.

Update your Pi with the latest updates and security patches

Some might remember “Black Friday” when a worm created some serious disruption in the tech world.. including at hospitals in the UK. And it happened primarily because people are not applying their security patches! Although the risk of your Pi being botified and ransomed my not be high.. you should be updating it regardless! So, let’s do that now.
root@raspberrypi:~# apt-get install ntpdate
root@raspberrypi:~# apt-get dist-upgrade

Finish up with this command to clean up some of the used disk space. Since you’ve already bumped the numbers on your partitions in the previous steps.. this is not nearly as necessary, but why leave unused stuff lying around? Your mother taught you to clean up afteryourself, right?
root@raspberrypi:~# sudo apt-get clean

AND THAT DOES IT FOR THIS EPISODE!

Dual Band Rubber-Duck Antenna Testing (SWR)

I recently acquired a new wide-band SWR meter from Amazon, and I wanted to revisit the antenna tests I’d run in the past with my old 70’s 11m test equipment.

So, today I got together all of my the rubber-duck dual-band antennas, picked one of my ChiComm radios and took some measurements.

Here are the antennas I tested (left to right).

  • Nagoya NA-701
  • SaineSonic INF-641
  • Nagoya NA-771
  • Baofeng stock (long)
  • Baofeng stock (short)

Here are the results for my test. I ran each antenna 3 times in each band; at the lower phone boundary, upper phone boundary and close to the center of the band.

VHF Lo – 144.1 MHzUHF Low – 420.0 MHz
VHF Center – 146.0 MHzUHF Center – 435.0 MHz
VHF High – 148.0 MHzUHF High – 450 MHz
AntennaVHF(l)VHF(c)VHF(h)UHF(l)UHF(c)UHF(h)
NA-7012.19:11.83:12.44:12.18:11.17:11.31:1
INF-6411.79:11.09:11.37:11.08:11.02:11.77:1
NA-7712.39:12.20:12.21:12.08:11.16:11.97:1
Stock (L)1.59:11.03:11.02:12.07:11.07:11.15:1
Stock (S)2.76:12.18:11.79:11.09:11.59:11.70:1

I was really surprised by how well (from an SWR standpoint) the little SaineSonic that came with my GT-3TP was. I was also shocked at how bad the two Nagoyas seemed to be. There was a 6th antenna (not stock, or Nagoya) that was in the 3:1+ range across all the bands. Either it was damaged, a fake.. or maybe they are simply garbage.

These tests are hardly scientific. I did, however, hold the radios in free space away from me, instead of testing them on the bench surrounded by metallic objects.. for those about to try and drop some truth bombs on me.

Once I figure out a fair rig to install the antennas into, I’ll hook up my little nanoVNA and see what it has to say. Could confirm these results, or it could say something completely different. What I’d like to see from the nanoVNA are some gain estimates. The little antennas might match well, but do they also have good gain; that is an important question.

My First Subaru

I’m not sure if this is a Southern thing, but in the non-owner neighborhood we live in, when people move out they seem to leave a lot of old junk on the curb in the hopes someone else will repurpose it. Perhaps they just don’t want to pay the feeds to have the junk hauled off. But not all of this is a bad thing, and that’s how I came to own my first Subaru.

A few weeks hence, while drinking a dram of some of Scotland’s finest Water of Life, I spied some boxy looking thing a couple of doors down the street, where a couple (or what was actually left of a couple) was moving out. Whatever it was, it looked like it had caught fire and was ready for an unceremonial dumping into the trash.

The thing languished on the curb for some time, and curiosity got the best of me. Upon inspection of this trash, I discovered that it was a generator, exactly the type of generator and capacity for a good day at the race track.

With the pull-cable hanging out, spots of black spray paint adorning the faded plastic ends, panels hanging off, and parts clearly missing, it was no prize. But grab it I did. Having recently watched some YouTube videos on restoring generators to working order I felt emboldened to take on a project. Besides, my daily work is in the cyber world and tasking myself with tangible project was a nice respite. Grunting and groaning at 3:00 AM, I hauled the wreck back to my garage and closed the door on my new project until the next morning.

Upon completion of my weekly day-job obligations, I changed clothes and set to examining this pile of junk that more assuredly would end up out on my curb by week’s end.

It was quickly appearant that the primary issue with the pull cable was the faded plastic end housing had cracked around the opening where the cable existed and was holding it fast. After some effort, the cable was freed from the housing, and with a pull I heard the sweet sweet sound of a small engine trying to puff to life. It wasn’t seized, it had compression and the pull start mechanism as in tact. At this point some excitement began to emergeā€¦ this just might be salvageable!

The next couple of hours involved removing many semi-fixed and rusted screws, panels and the plastic gas tank. Thank goodness it was plastic and not metal, I had no worries about rust! Once I had the remaining panels removed, it was then that I discovered that this was not some typical Chinese junk-pile motor in the generator. Instead it was clearly marked as an OHC (overhead camshaft) engine made by Subaru. This was a choice acquisition in deed! Even if I could not resurrect the electronics, this engine had value that far exceeded the appropriation cost of a short walk down the street.

Next order of business was to pull the spark plug and check for spark. After some fiddling around in the old tool box for the right spark plug removal tools, I had removed it to find the plug clean and free of rust. Things were looking better and better!

Placing the plug against the cylinder head and pulling the now freed pull start cable, a weak but detectable spark was seen. Yes.. this is going swimmingly. Two of three basic engine requirements satisfied. This seemed to have good compression and it makes spark. All I needed to do now was feed it some fuel and see if there was anything home! Just a quick shot of starting fluid answered that question too, as it briefly sputtered to life. Time to invest a little money in this project.

Over the next couple of days, I washed out, drained and dried the fuel tank, which was full of what looked like rocks. How or why those got in there is still a mystery to me, but I had some success in clearing them and the water out. While that progressed I spent $5 on a can of red paint, $4 on a can of TruFuel and another $5 on a fuel filter to prevent damage to the carburetor from anything I failed to remove from the gas tank.

After improving the aesthetics with some paint, and cleaning out all the nooks and crannies with the trusty air compressor, my first Subaru was ready for re-assembly.

With some pride and a solid sense of accomplishment, I summed the family to observe what I hoped would be a successful startup. With a single pull the generator sprang to life, and I’d further cemented my reputation as the fix-it-dad.

The little red Subaru now lives in the garage next to my other generator, waiting for a new job to do.